green infrastructure

Reducing Winter Road Salt Use

snow plow on a street in Connecticut during winter stormExtension educator Mike Dietz focuses on protecting surface waters with green infrastructure techniques in his research and Extension work. Mike has been involved in the development of the Green Snow Pro program, and he is the Director of the Connecticut Institute of Water Resources.

The scientific studies continue to pile up, and confirm the same thing: road salt is causing lots of problems in our streams and groundwater. The majority of salt applied is sodium chloride, also known as rock salt. In the absence of a new “miracle” deicer, salt will continue to be the most cost effective product for the foreseeable future. Therefore, the only way to reduce the impacts will be to reduce the amount that gets applied, while still keeping surfaces safe for travel.

New Hampshire began the “Green Snow Pro” voluntary salt applicator certification program to train municipal public works employees and private con- tractors. This training includes information about the science of salt, the downstream impacts of salt, how to properly apply given weather conditions, and how to calibrate equipment. An additional key component of the New Hampshire program is limited liability release: a property owner who hires a Green Snow Pro certified contracted has liability protection from slip and fall litigation.

Given the success of the program in New Hampshire, the Technology Transfer (T2) Center at UConn gathered professionals from UConn Extension, Connecticut Department of Transportation, Connecticut Department of Public Health, municipal public works, and Connecticut Department of Energy and Environmental Protection to adapt the program here in Connecticut. A pilot of the training was per- formed here at UConn in November 2017. UConn public works staff received a classroom and spreader calibration training. Mike Dietz maintains a monitoring station on Eagleville Brook downstream of campus. He was able to compare the amount of salt in runoff for the winter after the training, as compared to prior years (correcting for the number of storms). Substantial reductions were found: over 2,600 less tons of salt were used during the 2017- 2018 season, corrected for the number of storms. This resulted in a savings of over $313,000 in salt costs alone! A summary of these findings is currently under review at the Journal of Extension.

The statewide implementation of the Green Snow Pro program in Connecticut has begun: during the fall of 2018 the T2 center gave two separate trainings for municipal public works crews and more are being scheduled for this year. The group will continue to meet to work on the liability protection here in Connecticut, as well as expanding the offering to private contractors.

This effort has been a great collaboration of UConn educators, regulators, and public works professionals. The success of this program highlights the fact that education truly can have lasting environmental benefits.

Article by Mike Dietz

CLEAR Keeping Track of Stormwater on UConn Campus

Oak_Hall_bioretention
Oak Hall bioretention. Photo: Mike Dietz

Although UConn is in the midst of a pastoral setting in the quiet corner of northeast Connecticut, we sometimes have problems like a big city. This is because the buildings, roads, parking lots and sidewalks that make up the core of campus do not allow water to pass through into the ground. Instead, rainfall is directed into storm drains, and ends up heading towards either the Fenton River to the east, or Eagleville Brook to the west. All of the excess stormwater and pollutants that get picked up along the way cause problems with the aquatic life in these rivers. The CT Department of Energy and Environmental Protection has identified Eagleville Brook as impaired. UConn Extension’s Center for Land Use Education and Research (CLEAR) has been involved in efforts to reduce the impacts of all of these impervious surfaces on Eagleville Brook. Green infrastructure practices like bioretention, green roofs, and pervious pavements have been installed around campus to help restore a more “natural” hydrologic balance. A Total Maximum Daily Load (TMDL) has been established for the brook, with impervious cover as the “pollutant” (read more about this project at http://clear.uconn.edu/projects/tmdl). An interactive map tour with photos and videos is available online here.

With all of the changes taking place on campus, keeping track of the actual impacts of the green infrastructure implementation is not an easy task. Traditional water monitoring could be done, but this is very expensive and time consuming. Recently, UConn Extension Educator Michael Dietz at CLEAR created a unique system to estimate the benefits of the green infrastructure on campus. This tracking system uses real precipitation data from UConn, and estimates the amount of stormwater treated by each practice installed, given how big the practice is, when it was installed, and the condition of the practice. This allows for a running total of the volume of stormwater treated. Through June 2014, more than 42 MILLION gallons of stormwater have been treated! To put this in perspective, this is enough to fill more than 63 Olympic sized swimming pools!

This information is being used to track progress on the TMDL, along with other regulatory obligations between UConn and DEEP. Dietz plans to continue this tracking, along with other monitoring he and Jack Clausen perform on Eagleville Brook (real-time data available here).

Touring UConn’s Green Infrastructure – From Your Desk!

Anyone who has been to the UConn campus in the last few years has likely noticed a lot of changes. Beautiful new and renovated buildings are remaking the campus. Along with those changes are a lot of more subtle changes that you might not notice – namely the integration of green infrastructure.

As discussed in previous posts, green infrastructure refers to using nature and natural processes to deal with infrastructure issues like stormwater. It includes such practices as bioretention/rain gardens, pervious pavements, and green roofs (among others). UConn has become a statewide and national leader in implementing these practices.

To highlight some of UConn’s efforts and demonstrate how to integrate these practices into an urbanized/urbanizing community, we created a virtual campus tour using Esri’s Story Maps tool in AcrGIS Online. (Story maps, by the way, are an extremely slick and easy way to bring your data or information to life in a geographic context. Definitely worth checking out.)

Take the tour by clicking on the image below:

green roof

LID versus Green Infrastructure

If you deal with stormwater issues or land use planning, chances are you have heard the phrase “green infrastructure” mentioned a lot recently. It is rapidly replacing “Low Impact Development” (LID) as the phrase du jour in the stormwater biz. But before we all go willingly adopting this into our lexicon, we must first ask some pertinent questions.

1. What does green infrastructure mean?

If you Google (or Bing, if that’s how you roll) the phrase “green infrastructure” you will discover two related, but slightly different, definitions. Originally the term was used in land conservation circles to describe a planned and managed network of natural resources (forests, open space, waterways, etc.) in a community or watershed. The idea was that we can maximize the environmental benefits these areas provide to our communities by strategically planning where they are and how they can connect. This is very similar to what we have often referred to here at CLEAR as Open Space Planning.

IMG_2194-300x224

More recently, the term has been adopted by the water quality world to refer to approaches that divert stormwater (i.e., rain/snowmelt) into natural areas, rather than directly into storm sewers (a.k.a. “grey infrastructure”). In doing so, you reduce the quantity impacts of stormwater (flooding, CSOs, etc.), as well as the quality impacts by removing pollutants through natural processes/filtering. Green infrastructure in this context includes utilizing rain gardens/bioretention, rain barrels/cisterns, green roofs, permeable pavements, bioswales, land conservation, urban trees and more.

Read more…